Particle Physics Ideas for Dark Matter and Dark Energy

Maxim Perelstein, LBNL June 6, 2003

SNAP Cosmology Teach-In, LBNL

Introduction - I

- QUESTION: What is the Universe made of?
- Particle physicists' answer: particles!!!
- Standard Model of particle physics:

```
-6 quarks (\Longrightarrow \sim 100 mesons and baryons: p, n, \pi, K, \dots)
```

- -3 charged leptons: e, μ, τ
- -3 neutrinos: ν_e, ν_μ, ν_τ
- -4 gauge bosons: γ , Z, W^{\pm}
- -1 scalar boson: the Higgs H (?)
- Most of these particles are unstable, with τ < 1 sec, and require at least 1 GeV of energy to be produced ⇒ will not be present in a ~ 10¹⁰-year old Universe with a temperature of ~ 10⁻⁴ eV
- Exceptions: p, n (when bound in a nucleus), e, ν , and γ are stable
- A naive particle physicist would expect the Universe to be made of these five!

Introduction - II

- Cosmologists' answer: look at the data!
 - The universe is flat, or very nearly flat:

$$\Omega_{tot} = 1.02 \pm 0.02$$

from CMBR anisotropy measurements (WMAP, 2003) \Longrightarrow the total density is very close to critical.

- Non-relativistic matter (stars, galaxies, people, ...) contributes about 30% of the total – from gravitational dynamics of galaxy clusters + CMBR anisotropy.
 - * Out of this 30%, only about 5% is contributed by baryons (protons and neutrons) from Big Bang nucleosynthesis + CMBR anisotropy.
 - * The Universe is electrically neutral \Longrightarrow only about 0.01% is contributed by electrons
 - * The other 25% is DARK MATTER
- Radiation (photons) contributes a very small amount about 10^{-4} of the total.
- The remaining 70 % is a new, non-luminous, non-clustering component of the universe DARK ENERGY (SCP, High-ZSN, 1998)
- Only 5% is made out of p, n, e, γ !
- What about neutrinos?

4

Neutrinos - I

- Massless (or very light) neutrinos, $m_{\nu} < 10^{-4}$ eV, would behave as radiation, contribute $\sim 10^{-4}$ of the critical density \Longrightarrow not very interesting.
- Heavier ν's behave as non-relativistic matter ⇒ could contribute to dark matter!
- Neutrino oscillations prove that neutrinos have non-zero masses (SuperK, 1998; SNO, 2001; KamLAND, 2002)
- Oscillations observed: $\nu_{\mu} \leftrightarrow \nu_{\tau}$ (atmospheric), $\nu_{e} \leftrightarrow \nu_{\mu,\tau}$ (solar)
- Oscillation experiments are sensitive to mass differences between different flavors:

$$\Delta m^2_{atm} \approx 3 \times 10^{-3} \text{ eV}^2$$

$$\Delta m_{sol}^2 \approx 4 \times 10^{-5} \text{ eV}^2$$

- The overall mass scale is not fixed; still, at least 2 ν's must be non-relativistic!
- Precision studies of tritium β decay spectrum: $m_{\nu_e} < 3 \text{ eV}$

Neutrinos - II

- Neutrino density $\Omega_{\nu} = \rho_{\nu}/\rho_{c}$ can be calculated:
 - In the early Universe, ν 's are thermalized by weak interactions: e.g.

$$\nu + e \leftrightarrow \nu + e$$

- At that time, the density is known from thermodynamics:

$$n_{\nu} = \frac{3\zeta(3)}{2\pi^2} T^4$$

- The scattering rate is roughly

$$\Gamma \sim G_F^2 T^5$$

- Expansion rate in the early (RD) Universe:

$$H \sim T^2/M_{Pl}$$

- Neutrinos decouple (drop out of thermal equilibrium) when

$$\Gamma \sim H \implies T \sim 1 \text{ MeV}$$

- After that, $n_{\nu} \propto T^{-4}$ for $T > m_{\nu}$ and $n_{\nu} \propto T^{-3}$ for $T < m_{\nu}$.
- The answer (for each ν species):

$$\Omega_{\nu}h^2 = \frac{m_{\nu}}{91 \text{ eV}}$$

• Degenerate ν 's with $m_{\nu} \approx 3 \text{ eV}$ could provide enough dark matter!

Neutrinos - III

 However, the νDM hypothesis contradicts the CMB and large-scale structure data!

Inflationary paradigm:

- Quantum fluctuations created during inflation...
- Lead to inhomogeneities in the cosmic fluid after reheating ($t \sim 10^{-37}$ sec.) with adiabatic, scale-invariant spectrum...
- Which lead to the CMB anisotropies ($t \sim 10^5 \text{ yrs}$)...
- And ultimately to the formation of galaxies, clusters, etc. ($t \sim 10^9 \text{ yrs}$).
- After $t \sim 1$ sec, ν 's do not move with the rest of the cosmic fluid
- 3 eV ν 's are relativistic until $t \sim 10^4 \text{ yrs} \Longrightarrow$ "free-stream", partly erasing the inhomogeneities

- Large Ω_ν ⇒ deviations from the scale-invariant spectrum ⇒ inconsistencies with CMB, LSS
- Upper bound: $\Omega_{\nu}h^2 < 1\%$, $\Sigma m_{\nu} < 0.7 \text{ eV (WMAP + 2dFGRS, 2003)}$
- FIASCO of the SM: the five stable particles together account for only 6% of the matter in the Universe!

Beyond the SM I

- Computing quantum corrections in most field theories (including SM) involves integrals which diverge at high virtual momenta
- Mathematically, this can be dealt with by renormalization
- Physically: divergences \iff applying a theory where it's no longer valid

- Expect a deeper layer of structure beneath the Standard Model (at shorter distances/higher energies)
- Guess: the more fundamental theory will also incorporate gravity
- String theory is finite and contains gravity

 the best candidate for the "ultimate" theory
- Can the SM be a valid effective theory up to the Planck scale?

Beyond the SM II

 All parameters of QFTs (masses, coupling constants) depend on the energy scale at which they are measured ("running")

- Fundamental theory determines the "bare" values of parameters at the cutoff scale E_c (the scale at which the SM breaks down)
- Bare values + running \Longrightarrow the observed values at $\mu \ll E_c$
- For all SM parameters, the running is weak (logarithmic):

$$\alpha(\mu) = \alpha(\Lambda) + \frac{\alpha^2}{4\pi} \log\left(\frac{E_c}{\mu}\right)$$

Beyond the SM III

EXCEPTION: the Higgs mass runs very fast ("instability")

$$m^2(\mu) = m^2(E_c) - \frac{3\lambda_t^2}{16\pi^2} \left(E_c^2 - \mu^2\right)$$

Correct description of the Weak force requires

$$m^2(\mu = 100 \text{ GeV}) \approx (100 \text{ GeV})^2$$

- Assuming $E_c \approx M_{Pl}$, the running term is about 10^{30} times too big
- Can be cancelled by fine-tuning the bare mass term, $m^2(E_c)$, at 10^{-30} level...
- BUT, how does the fundamental theory "know" about running at low energies?
- No examples of such cancellations in any known effective field theory
- A much more reasonable alternative: $E_c \approx 1 \text{ TeV} \Longrightarrow \text{SM breaks}$ down, new physics appears at energy scales about 1 TeV
- The new physics "stabilizes" the Higgs mass

 part of the electroweak symmetry breaking mechanism
- The TeV energy scale is accessible to the LHC

 discoveries beyond the SM Higgs are very likely

Beyond the SM - IV

- In the meantime, theorists try to guess!
- Guidance: need to stabilize m_H ("solve the hierarchy problem")
- Options for the theory beyond 1 TeV:
 - Field theory with no Higgs boson (technicolor)
 - Field theory, Higgs boson is there but its mass does not run fast (supersymmetry, little Higgs)
 - Not a field theory at all (extra dimensions)
- Each of these options has experimentally observable consequences
 testable at the LHC
- Each has multiple new particles, typically in the 100 GeV 1 TeV mass range
- Can these particles be dark matter?

BSM Dark Matter I

- General requirements on a "dark matter candidate" X:
 - -X has to be stable (or at least have $\tau > 10^{10}$ yrs)
 - -X cannot have strong interactions: otherwise pX exotic nuclei
 - Neutrality \iff X cannot be electrically charged (unless also have Y of the opposite charge!)
- Calculate the abundance of a weakly-interacting particle X with mass m in the 100 GeV – 1 TeV range (WIMP):
 - Interaction rate for $T \lesssim M_E W$:

$$\Gamma \sim n_X \, \sigma \sim n_X / M_{EW}^2$$

- Decoupling: $T_d \sim m \sim M_{EW}$
- Abundance at decoupling:

$$\Gamma \sim H \implies n_{X,d} \sim \frac{M_{EW}^2 T_d^2}{M_{Pl}}$$

Abundance today:

$$n_{X,0} = n_{X,d} \left(\frac{T_d}{T_0}\right)^3 \sim \frac{M_{EW}T^3}{M_{Pl}}$$

Energy density in WIMPs today:

$$\rho_{X,0} = m \, n_{X,0} \sim \frac{M_{EW}^2 T^3}{M_{Pl}}$$

- Numerically,

$$\rho_{X,0} \sim \rho_{crit,0}$$

a pretty amazing coincidence!

BSM Dark Matter II

 WIMP decouples from thermal plasma when it is non-relativistic

 no free-streaming!

· ·

- WIMP (or a "stable Z boson") would be an ideal dark matter candidate!
- Almost all BSM theories have WIMPs; the issue is stability
- Stability typically requires a conserved quantum number
- "Dark Matter Parity" (conserved in the SM):

$$Z_{DM} = (-1)^{3(B-L)+2S}$$

• $Z_{DM} = 1$ for all SM particles...

BSM Dark Matter III

- Supersymmetry: bosons (spin-0,1) \iff fermions (spin-1/2)
- SM particles have superpartners: sleptons, squarks, gauginos
- Superparticles have not been seen yet too heavy
- Superparticles have same B, L, but S differs by $1/2 \Longrightarrow$ they have $Z_{DM} = -1 \Longrightarrow$ the lightest superparticle (LSP) is stable!
- If the LSP is uncolored and electrically neutral, it provides a perfect WIMP candidate
- Four superpartners with the right quantum numbers: Photino, Zino, Higgsino (

 Neutralino), Sneutrino
- The nature, mass, cross-sections of the LSP are model-dependent
- Neutralino tends to be the most attractive candidate
- Many detailed studies of the neutralino abundance (Ellis, Olive, ..., 1990 – 2003)
- All are subject to significant uncertainties!
 - Assumptions about SUSY: ~ 120 parameters ⇒ 2! (e.g. Birkedal-Hansen, Nelson, 2002)
 - Assume no entropy production in QCD phase transition (Birkedal-Hansen, MP, in progress)

BSM Dark Matter IV

(Credit: Andreas Birkedal-Hansen)

(~ B,)

BSM Dark Matter V

- Another possibility: extra dimensions!
- "Universal" extra dimensions, $R \sim 10^{-16}$ cm (Appelquist, Cheng, Dobrescu, 2000)

Kaluza-Klein (KK) decomposition:

$$\phi(x,y) = \sum_{n} \phi_{n}(x) \exp\left(\frac{iny}{R}\right)$$

- Zero-modes $(\phi_0) \iff SM$ particles
- The first "KK excitation" (ϕ_1) : $M \sim 1/R \sim \text{TeV}$
- KK number $n \iff \text{momentum } k_5 \implies \text{conserved!}$
- The lightest KK particle (LKP) is stable
- Hierarchy of the KK masses is determined by radiative corrections (Cheng, Matchev, Schmaltz, 2002)
- For example, LKP could be KK neutrino ν_1 or KK photon γ_1

BSM Dark Matter VI

Both particles can be dark matter with the correct abundance (Servant, Tait, 2002)

• Direct and indirect detection possible (Cheng, Feng, Matchev, 2002)

· Direct detection: 6(81+p> 8'+p)

· Indirect detection: By from B++B1 -> x+x

Dark Energy I

- Effective Field Theory (EFT) Approach: (Wilson, Weinberg, ..., 1970's)
 - All terms consistent with the symmetries of the theory should be included in the Lagrangian \iff infinite number of terms!
 - EFT breaks down at a high energy scale E_c , where it is superseded by a more fundamental theory
 - At low energies, $E \ll E_c$, only a finite set of "renormalizable" terms is important; others are suppressed by powers of (E/E_c) \Longrightarrow predictivity!
- Standard Model is an EFT, with a cutoff ~ TeV
- A constant term in the Lagrangian is consistent with all the symmetries

 has to be included!

$$S = \int d^4x \sqrt{-g} \Lambda + \dots$$

- Physical meaning: $\Lambda = \text{vacuum energy (a.k.a. "cosmological constant")}$
- The only observable consequence of Λ: influences the expansion of the Universe
- Acts as a component with w = -1: could be dark energy!
- Attractive: does not require extending the SM!

Dark Energy II

Just like the Higgs mass, Λ runs very fast:

$$\Lambda(\mu) = \Lambda(E_c) + \frac{g^2}{16\pi^2} (E_c^4 - \mu^4)$$

• Data: $\Omega_{DE} \approx 0.7 \text{ (SN, WMAP)} \Longrightarrow$

$$\Lambda \approx (10^{-3} \text{ eV})^4$$

- This is a measurement of Λ at huge distance scales
 very low
 μ, effectively Λ(0)
- Assuming $E_c \approx \text{TeV}$, the running term is about 10^{60} times too big much worse than the Higgs mass
- Again, can be cancelled by fine-tuning the bare term, $\Lambda(E_c)$, at 10^{-60} level
- This would require conspiracy between Hubble-scale and subatomic physics – no known examples in any EFT!
- This is the famous "cosmological constant problem"
- Unlike the Higgs mass case,

NO SOLUTION IS KNOWN!!!

This problem severely limits particle physicists' ability to talk sensibly about dark energy...

...But does not stop them from doing so!

Dark Energy III

- Only two mass scales are believed to be "fundamental" in particle physics:
 - Electroweak symmetry breaking scale: $M_W \sim 1$ TeV determines the range of the weak force
 - Planck scale: $M_{Pl} \sim 10^{18} \; {\rm GeV}$ determines the strength of gravity
- Dark energy seems to require a new "fundamental" mass scale:

$$\Lambda \approx (10^{-3} \text{ eV})^4$$

An extremely intriguing coincidence - the "scale relation":

$$\Lambda \sim \left(\frac{M_W^2}{M_{Pl}}\right)^4$$

- Explaining the scale relation requires solving the c.c. problem!
- May provide an important HINT... but so far we haven't been smart enough to use it!
- Nevertheless, the scale relation led to some interesting speculations (Arkani-Hamed, Colda, Hall, Murayama, 2000)
 - New perspective on the "coincidence" problems
 - Multiple-vacuum models

Dark Energy IV

Observation of dark energy has raised two interesting questions:

- Why do the three lines almost meet? (the "triple coincidence problem")
- Why do we live so close to the time when they met? (the "why now problem")
- Scale relation ← Triple coincidence:
 - Matter density (for WIMPs):

$$\rho_m \sim \frac{M_{EW}^2 T^3}{M_{Pl}}$$

Radiation density:

$$\rho_r \sim T^4$$

– Matter-radiation equality tempearture:

$$T_{eq} \sim M_{EW}^2/M_{Pl}$$

- At T_{eq} , $\rho_{\Lambda} \sim \rho_{m,rad}$ if, and only if, the scale relation is satisfied!

Dark Energy V

- A theory explaining the scale relation will automatically resolve the triple coincidence problem!
- The why-now problem necessarily requires anthropic arguments...
- Partial explanation of the scale relation:
 - Consider a supersymmetric model with SUSY breaking at ~
 TeV
 - − MSSM fields feel SUSY breaking via gauge interactions ⇒ superpartners at the TeV scale
 - Add a hidden sector which only feels SUSY breaking via gravity

 Consider a hidden sector with multiple vacua, degenerate in the SUSY limit

- Splittings between vacua are

$$V_m - V_n \sim \left(\frac{M_{EW}^2}{M_{Pl}}\right)^4$$

- ⇒ scale relation!
- The overall scale has to be fine-tuned...

Quintessence I

- Vacuum energy has equation-of-state w = -1
- From data (SN, CMB, LSS)

$$w \lesssim -0.7$$
 at 95% c.l.

- Logical possibility: Λ ≡ 0 (exact cancellation), dark energy is something else
- The most popular alternative: "scalar field quintessence"

Evolution of a spacially-homogeneous scalar field in the FRW Universe:

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

A simple example: quadratic potential

$$V = \frac{1}{2} m^2 \phi^2$$

⇒ harmonic oscillator with friction

 $-m \gg H$: underdamped, $w_{eff} = 0$

 $-m \ll H$: overdamped, $w_{eff} = -1$

 $-m \sim H$: critically damped, quintessence

Quintessence II

Quintessence models require

$$m_q \sim H \sim 10^{-33} \text{ eV}$$

- This is the low-energy mass, effectively $m_q(0)$
- Without a stabilization mechanism, requires fine-tuning to one part in 10⁹⁰!
- The problem applies to any potential: e.g.

$$V(\phi) = \mu^4 e^{-\phi/M} \approx \mu^4 \left(1 - \frac{\phi}{M} + \frac{1}{2} \frac{\phi^2}{M^2} + \ldots\right)$$

- \implies instability in both μ and M
- Challenge: to construct radiatively stable (or "natural") models of quintessence
- An idea that does **NOT** work: supersymmetry
 - In real world, SUSY is broken at least at ~ TeV
 - Any field has at least gravitational-strength interactions with the SUSY-breaking fields (gravity is universal!)
 - The minimal mass that can be protected by SUSY:

$$m_{min} \sim \frac{\text{TeV}^2}{M_{Pl}} \sim 10^{-3} \text{ eV} \gg m_q$$

Quintessence III

- A better idea: axion quitessence (e.g., Nomura, Watari, Yanagida, 2000)
 - A scalar can be massless if it is a Goldston boson due to an exact global symmetry: Symmetry ⇒ stability
 - Small symmetry breaking ⇒ small mass
 - Example: Peccei-Quinn axion

$$m_a \sim \frac{\Lambda_{QCD}^2}{f} \gtrsim 10^{-12} \text{ eV}$$

QCD confinement scale arises from dimensional transmutation:

$$\Lambda_{QCD} \approx M_{Pl} \exp(-\frac{2\pi}{\alpha_s(M_{Pl})\beta})$$

- An $\mathcal{O}(1)$ change in β can give a huge change in Λ_{QCD}
- Imagine a new QCD-like sector (none of the SM particles are "colored") with $\Lambda_{new} \sim 10^{-33} \text{ eV}$
- The axion of that sector could be quintessence, naturally
- Axion potential:

$$V(a) = \Lambda_{new}^4 \cos \frac{N_{PQ} a}{f}$$

Quintessence IV

- Quintessence from extra dimensions (e.g. Albrecht et.al., 2001)
 - A 5D world: $G_{MN} \rightarrow g_{\mu\nu}, g_{\mu 5}, g_{55}$
 - Finite fifth dimension $\Longrightarrow g_{55} \sim \text{size}$ ("radion" field)

- Translational invariance ← massless radion
- Small breaking by brane attraction/repulsion, Casimir energies,
 etc. ⇒ small radion mass
- Claim: in 6D models with large (ADD) extra dimensions, radion can play the role of quintessence, naturally

Domain Walls I

- Another altenative: domain walls (Friedland, Murayama, MP, 2002)
 - Exist in any EFT with multiple, discrete, degenerate vacua
 - Form in the early Universe via Kibble mechanism (consequence of causality)
 - CMB constraints require > 10⁶ walls in the present Hubble volume ⇒ frustrated network

- The symmetry breaking scale ~ 1 MeV \Longrightarrow SUSY can be used to ensure radiative stability
- Equation of state: $w = -2/3 \Longrightarrow$ ruled out by data????

Conclusions

- SM particles constitute only about 5% of the Universe
- Theoretically motivated BSM models can provide good candidates for dark matter – another 25%
- However, abundance predictions are very model-dependent
- The remaining 70% dark energy could be vacuum energy, present in SM and any BSM model
- All particle physics models predict too much vacuum energy, by many orders of magnitude
- The observed energy scale of dark energy is simply related to the weak and Planck scales, but no explanation
- Sensible particle physics models of quintessence can be built, but radiative stability has to be ensured